Geospatial and LiDAR-based analysis of 18th to early 20th century timber harvesting and charcoal production in southern New England

Katharine M. Johnson, William B. Ouimet, and Zachary Raslan University of Connecticut

Department of Geography & Center for Integrative Geosciences

Twitter: @kjjRI | #NEGSA2015

HUMAN IMPACTS ON THE LANDSCAPE

Humans are geomorphic agents, but have a dialectical relationship with the physical landscape.

Background

- Charcoal burning platforms / hearths / pits/meilers (circular platforms referred to as "kilns" in Europe)
- Collier selected suitable site, graded it, stacked logs up to 20 feet high, fired near "lower side", could be long or round. Might produce up to 6,000 bushels of charcoal. *
- Charcoal produced locally on smaller scales for subsistence and local economic trade/sale.
- Larger operations in areas where iron ore was discovered to fuel furnaces.
- Replaced slowly in second half of 19th century by metal kilns and increasing availability of anthracite coal. Put colliers out of business & decreased local demand for "backwoods" charcoal. *^
- * Journal of the United States Association of Charcoal Iron Workers 6(1). February 1885.
- [^] Barger, Lucas C. 2013. *Life on a Rocky Farm: Rural Life Near NYC in the Late 19*th Century.

Chester County Parks & Recreation Iron Heritage

Connecticut Historical Society 1980.24.5

Connecticut Historical Society 1980.24.4

Background

- Preferences for size, quality, and type of wood to make better quality charcoal.
- Forest stands cut every 20-40 years when trees were smaller.
- Estimated 600 acres
 harvested annually to fuel
 one typical furnace. Over 20
 year time period, 20 lots of
 600 acres each; 12,000 acres
 in rotation (Straka 2014)
- On steeper slopes that might not have been used or preferred for tillage but instead for wood lots or pasture.

Found internationally

Hesse 2013, Germany

Potter et al. 2013, Pennsylvania

Raab et al. 2014, Germany

Risbol et al. 2013, Norway

Dataset & Study Area

- Charcoal burning platforms (n = 20,432)
- LiDAR extents (NE & NW USDA datasets, 2010 & 2011 avg. point spacing 2/m²)

Variation in size and construction technique

- Some built into slopes, and/or re-enforced by stones
- Others subtle topographic relief, rings with raised centers
- Variation based on collier preference, time period?

Photo by Megan Hill

Photo by Will Ouimet

Morphology

Morphology

- Zonal statistical mean slope on sample of 6,017 CBPs in a highly clustered region of NW CT.
- Suggests full outer diameter of 16m and inner diameter of 10m for sample size in NW CT, but variation is likely.

2.922605 3.236634

4.177025

6.131228 8.740123

8 10.663235 9 10.291844 10 10.297072

Morphology

- Size varies across time and location
- Ranges seen in CT are similar to those for same time period in Europe

Source	Location	CBP Size	Time Period
Johnson, Ouimet & Raslan 2015	NW CT	~ 10 - 16 m diameter	18 th -20 th century
Hesse 2013 Nelle 2002	Southern Black Forest Germany	7-11 m diameter 4-12 m diameter (smaller on steeper slopes)	17 th -20 th century
Crutchley & Crow 2009	England	"up to 10m in diameter"	??
Risbol 2013	Norway	~ 20 m diameter	17 th -19 th century
Potter et al 2013	Pennsylvania	~ 15 m in diameter	18 th -20 th century
Raab et al 2014	Germany	2.6-28.5 m (9.9 avg)	17 th -19 th century (dendrochronology)

Spatial Distribution / Clustering

- At study-area scale, there are clear first-order trends
- Spatial distribution varies dependent on certain scale thresholds
- Dispersed/regular spacing over larger area, and clustering over smaller area could be result of human land use decisions.

Importance of elevation and slope on density

Influence of local slope on platform construction

- Flat platform, can't extract slope to points.
- 2m buffer, 8m away from point center.
- Zonal statistics for buffer (113 1m pixels, avg.)
- To get significant results, created 20,432 random points (same as original dataset)
- Ran 30 simulations (>95% CI)

Influence of local slope on platform construction

Other variables – future research

• Bedrock geology – preference for higher slope?

Other variables – future research

- Decision-making process of historic land use; relationship to stone walls and other types
- Extent of historic deforestation and land use patterns;
 relate to modern landscape
- Distance to iron works/furnaces
- Understand extent of land surface modifications in Anthropocene

Thank you! Questions?

Acknowledgements:

Zachary Raslan for digitizing the locations of charcoal platforms, **Amy Burnicki** at UConn Geography/ Engineering for assistance with statistical methods, **Noel Potter et al** for their work at 2013 NE GSA on PA charcoal industry/LiDAR, **USDA NRCS/CT ECO** for making the LiDAR datasets available <u>Funding:</u>

AAG Historical Geography Specialty Group, NE GSA, UConn Geography, UConn Center for Integrative Geoscience, UConn Graduate School

Sources cited:

- Crutchley and Crow 2009. The Light Fantastic: Using airborne LiDAR in archaeological survey. Published by English Heritage:Swindon, UK.
- Foster et al 1998. "Land-Use History as Long-Term Broad-Scale Disturbance: Regional Forest Dynamics in Central New England." *Ecosystems* 1(1):96-119.
- Hesse 2013. "Charcoal burning platforms in the southern Black Forest: from LiDAR point cloud to spatial patterns of resource use." Poster presented at conference Socio-environmental dynamics over the last 12,000 years: the creation of landscapes III.
- Lightfoot et al 2013. "European colonialism and the Anthropocene: A view from the Pacific Coast of North America" Anthropocene 4:101-115.
- Potter et al 2013. "LiDAR Reveals Thousands of 18th and 19th century Charcoal Hearths on South Mountain, South-Central Pennsylvania. Poster presented at 2013 NE GSA. GSA Abstracts with Programs 45(1):99.
- Raab et al 2014. "Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination" *Quaternary International* IN PRESS.
- Risbol et al. 2013. "Interpreting Cultural Remains in ALS generated DTMs: effects of size and shape on detection success rates" *Journal of Archaeological Science* 40(12):4688-4700.
- Straka, T. J. 2014. "Historic Charcoal Production in the US and Forest Depletion" Advances in Historical Studies 3:104-114.
- Smith, B. & Zeder, M, 2013. "The Onset of the Anthropocene" Anthropocene 4: 8-13.